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Crossover behaviour and effective critical exponents in 
isotropic and anisotropic Heisenberg systems 
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t Department of Physics, University of Edinburgh, Edinburgh, UK 
.t Department of Physics, University of Southampton, Southampton SO9 5NH, UK 

Received 26 January 1976 

Abstract. Renormalization group methods are used to determine, to second order in 
E = 4 - d ,  the scaling function describing the crossover from Gaussian to Heisenberg 
behaviour in the susceptibility of an isotropic n-component spin system. The results are 
used in conjunction with an earlier Feynman graph calculation to obtain an O(E*) represen- 
tation of the n-to-m-component susceptibility crossover function, and the corresponding 
effective exponents, for an anisotropic n-component system. 

1. Introduction 

The application of renormalization group (RG) techniques to the study of crossover 
phenomena has recently received considerable attention. Developing the techniques 
pioneered by Wilson (1971) and Riedel and Wegner (1974), Nelson and Rudnick 
(1975) have shown how Wilson’s RG recursion relations (Wilson and Kogut 1974) may 
be exploited to yield expressions for crossover scaling functions. These are the functions 
which describe the way in which the critical behaviour of a system, with a small 
‘universality-class-changing’ perturbation, evolves from ‘primary’ character (typical of 
the unperturbed system) far from T, to its ‘secondary’ character (which reflects the 
perturbation) in the asymptotic regime. These techniques have been used to analyse 
the behaviour of n-component vector models with a dominant m-component spin 
anisotropy (Nelson and Domany 1976, Kosterlitz 1976) and the behaviour of a 
Heisenberg system with dipole-dipole interactions (Bruce et a1 1976). 

All such calculations have, so far, been restricted to lowest order in = 4 - d, largely 
as a result of problems associated with the additional irrelevant variables that enter the 
Wilson RG equations at 0(c2) .  As in the calculation of critical exponents and amplitude 
ratios, these problems may be by-passed, to some extent, witth the aid of Wilson’s 
(1972) Feynman graph (FG) methods, which may be utilized to yield the E expansions of 
crossover scaling functions directly. The O ( E ~ )  expansion of the susceptibility crossover 
function for the aforementioned anisotropic spin system was calculated in this way 
by one of us (Bruce 1975, to be referred to as I). Unfortunately, this approach suffers 
from the same defect as the FG calculation of the equation of state of the n-vector model 
(BrCzin et a1 1973), namely that it yields a representation of the appropriate scaling 
function that consists of a series of logarithmically divergent terms (equation (3.19) of I) 
whose singularities (associated with the secondary critical behaviour-or the behaviour 
on the co-existence curve in the equation-of-state problem) have to be interpreted as 
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the E expansion of some power law behaviour which can be reconstructed only with the 
aid of additional information. 

The purpose of the present work is twofold. Firstly, as described in 8 2, we use 
Zinn-Justin’s (1973) formulation of the RG to yield a representation of the susceptibility 
scaling function for the Gaussian-Heisenberg crossover problem to second order in E .  
This approach is characterized by RG equations (bearing some similarity to those of a 
limiting case of Wilson’s equations (Bruce er a1 1974)) which have the merit that the 
equations for the troublesome higher-order transients are decoupled. 

The Gaussian-Heisenberg crossover problem is itself of some physical relevance in 
the contexts of tricritical phenomena in isotropic n-vector systems, and the polymer 
( n  = 0 component) problem (Burch and Moore 1976). In addition, however, as we 
describe in the second main portion of this work, contained in 0 3, the results of 0 2 may 
be utilized to obtain, in conjunction with the results of I, a complete description of the 
n-to-m-component crossover behaviour in the susceptibility of the anisotropic spin 
system. Specifically, our calculations reveal how the aforementioned logarithms, 
obtained in the E expansion of the scaling function found in I, should be exponentiated 
to yield a satisfactory representation of the limiting behaviour of the crossover function. 
The results of these calculations, like those of § 2, are summarized with the aid of the 
‘effective-exponent’ concept, introduced by Riedel and Wegner (1974). 

2. The Gaussian-Heisenberg crossover 

2.1. Renormalization group equations 

The problem we consider in this section can be described by the Ginzburg-Landau- 
Wilson effective Hamiltonian 

uA‘ 
i(04)’+i(m&+ t ) $ 2  +$A-2(V2$)2 + ~ ( 4 ~ ) ~ ) .  

Here $ is an n-component field and the O(n) invariance of 2 corresponds to an 
isotropic Heisenberg system. The bare mass term has been split up into m:c+ t where 
m& is the bare mass of the critical theory and t is a measure of the reduced temperature 
( T -  Tc). The cut off A is implemented by the fourth-order derivatives in (2.1) and the 
bare coupling is written in terms of a dimensionless coupling U and a dimensional factor 
A‘, since A-’ is the microscopic length scale controlling dimensional parameters in 2. 
As usual, E = 4 - d where d is the dimension of space. 

When U = 0, equation (2.1) is the Gaussian Hamiltonian of a free-field theory, and 
its critical exponents are those of mean-field theory. For any positive U (we do not 
consider U C 0 in this paper), (2.1) describes a Heisenberg system, with Heisenberg 
exponents differing from mean-field exponents if d < 4, no matter how small U is. The 
dimensionless quantity uA‘r-E’2 controls how rapidly the behaviour crosses over from 
Gaussian (‘primary’) to Heisenberg (‘secondary’) character, as r/A2 + 0, for small U. 

The behaviour of thermodynamic functions as t/A2 + 0 can be obtained using RG 
and €-expansion methods. The particular form of RG we shall use is that described by 
Zinn-Justin (1973). Consider the proper vertex functions I“”(q; U, t, A). These are the 
sums of all one-particle irreducible graphs with N external legs; q represents the N 
external momenta and N spin indices have been suppressed. These functions obey the 
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RG equation 

(A~+~(u)--(y4(u)-y3(u))t--~Ny3(u) a a T"'(q; U, t, A) =AI'(" 
au at 

where AT"' is smaller than T"' by terms of order (t/A2), (q'/A') up to powers of 
ln(t/A'), ln(q/A) in an E expansion. If we can neglect such terms in the critical region 
t << A', q << A, then we obtain a homogeneous equation 

obeyed by vertex functions in which only the leading terms (in the above sense) have 
been retained. 

The same approximation on vertex functions is made in Wilson's (1972) FG method, 
where, however, the pN' are expressed in terms of the exact inverse susceptibility r 
instead of the reduced tem erature t. Thus instead of calculating the PN) perturbatively 
with a bare propagator (q + t + h-'q4)-', and a mass counterterm m& as suggested by 
equation (2.1), it is convenient to use the tabulations for Wilson's method given by 
Nickel (1972, 1974), exploiting the self-consistency condition for the self-energy 

P 

t = Z(0, r) - Z(0,O) (2.4) 

to eliminate r in favour of t. Straightforward calculations then yield the results 

r"'(0; U, t, A) = r 

= t{ l+~(n+2)u[ln(t /A2>+1-$~ ln'(t/A')] 

+&(n + 2)u2[(n + 5) ln2( t/A') + 3(n + 2) ln(t/A') + 2(n + 2) 

-3(4+~'-8A)]}+O((u, E ) ~ )  (2.5) 

(2.6) r(''(q; U, 0, A)=q2{1-&(n+2)u2[ln(q/A)+~-$A]}+O((u, E ) ~ )  

and 

I'(4'(0; U, t, A) 
=A'u(l+d(n+8)u{[l+du(n+2)] ln(t/A2) 

+&(n +2) + 2  - E [ :  ln2(t/A2)+i ln(t/A')]} 

+&n' + 6 n  + 20)u2[ln2(t/A2) + 4  ln(t/A2) +4] 

+&n + 22)u2[% ln'(r/A') +ln(r/A2) - 2 -d.rr2+4A]) +O((u,  (2.7) 

All graphs with up to two loops are included in these expressions, including constants at 
the highest order in u (depending on T and A = 1.17) which will contribute only to 
non-universal scale factors at this order in E. For simplicity, a factor 
Kd = ~ ~ ' ' r ( 4 d ) - ' ( 2 ~ ) - ~  from each loop integral is absorbed into U. 

The fact that these three vertex functions obey equation (2.3) yields three simul- 
taneous equations which are readily solved perturbatively for the functions p, y4 and y3. 
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All dependence on ln(t/A’) disappears and one finds 

p ( u )  = -€U +i(n +8)u2(1 + & ) - & 3 n  + 14)u3+0((u,  E ) ~ )  

y4(u) = - +(n + 2)u (1 + fe) + f(n + 2)u2 + ~ ( ( u ,  el3) 

y3 (u )  =&(n+2)uZ+0((u,  el3). (2.10) 

(2.8) 

(2.9) 

As in renormalized perturbation theory (see BrCzin et a1 1976 for a review) we utilize 
these results in conjunction with (2.3), which we integrate by the method of characteris- 
tics. Thus we define r = l n  A and introduce functions U ( T )  and t ( r )  by 

-- dU(T) -  p ( U ( 7 ) )  
d r  

(2.11) 

(2.12) 

with initial condition u(0) = U, t(0) = t corresponding to the ‘physical’ system with 
coupling U, reduced temperature t and cut-off A =  eo= 1 .  Then (2.3) has the formal 
solution 

(2.13) 

We shall exploit this equation in the following section, where the critical behaviour, 
t<< 1, of the left-hand side is obtained by chbosing a value of r such that the vertex 
function on the right-hand side is that of a system far from criticality. 

2.2. The susceptibility crossover scaling function 

We now proceed to implement the results of the preceding subsection-to calculate the 
susceptibility, given by 

(2.14) 

as a function of U and t, to second order in E. The first step in this calculation is the 
integration of equations (2.1 1) and (2.12) for u ( r )  and t ( T ) ,  using the functions p, y4 and 
y 3  as defined in equations (2.8)-(2.10), and with the initial conditions u(0)  = U, t(0) = t. 
The solution for U ( T )  may be written in the form 

x-l= r = r”’(0; U, t, 1) 

where U* is the solution of p(u*) = 0, 

while A H  and A G  are defined by 

& = E  

(2.15) 

(2.16) 

(2.18) 

We remark that (2.15) is a solution of (2.8) and (2.11) within the approximations 
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inherent in the former equation; that is, du/d.r as obtained from (2.15) is in accord with 
(2.8) and (2.11) to within terms O((E,  U)'). In the same spirit, equation (2.12) may be 
integrated to yield 

where 

(2.19) 

(2.20) 

We note, for future reference, the equality 

P = [(l/v) - 2YAI-f + O ( d  (2.21) 

where A H  is given by (2.18) and Y is the usual Heisenberg exponent (Wilson 1972). 
The second step requires the evaluation of the right-hand side of equation (2.13) to 

the appropriate order in E .  Evidently r"'(0; u ( T ) ,  t ( T ) ,  e') is given directly by equation 
(2.5) with the replacements U + u ( T ) ,  f + f(T),  A +  e' while the exponential prefactor has 
already been obtained in the calculation leading to (2.19). Then, substituting for f(7) 

using (2.19), one obtains 
- 1  = r(*)(o; U, t, 1) 

where 

pl=-(1+ (n+2) 
(n+8)  (n+8)  (2.23) 

Again, we note that p' may be expressed as 

p ' =  (1  - Y ) / ( A H Y )  (2.24) 
where y is the Heisenberg susceptibility exponent with the expansion, which we quote 
for completeness (Wilson 1972), 

(2.25) 

We remark that, although we have retained terms of order u ~ ( T )  and E U ( T )  in the curly 
brackets in (2.22), such terms will contribute (at this order) only to non-universal critical 
amplitudes and could in principle have been neglected. 

Finally, we need to employ a matching condition such that the perturbation 
expansion in U ( T )  in equation (2.22) can be trusted. A suitable choice is 

r(7) = e". (2.26) 
This condition realises the conventional renormalization group aim of relating the 
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physics of a critical system to that of a new system which is non-critical, and whose 
behaviour can (as we have supposed) be calculated in perturbation theory (Wilson and 
Kogut 1974, Riedel and Wegner 1974). Using(2.15), (2.19) and (2.22) andintroducing 

p = u(7 ) /u*  (2.27) 

one obtains a representation of the susceptibility in parametric form: 

(2.28) 

with 
( 1  - p ) ( d A ~ ) + ( ~ ~ / z ) p  = t-f/2(U/U*)[1 - ( u / u * ) ~ ( d A ~ ) + ( d 2 )  (2.29) 

We have separated out an analytic, non-universal prefactor Z( U) defined by 

(n+2)’(n+3)(n2+28n+100) 
3(n +814 

+ (2.30) 

Equations (2.28) and (2.29) may be cast into a more compact form with the introduction 
of non-linear scaling fields T and U, defined by 

T= tZ(u)[l - (u/u*)]-p’  

U = ( U / U * ) ( Z (  U))‘/’[ 1 - (U/ u * ) ] ” / ( 2 A H v )  

Making use of these substitutions, and recalling (2.21) and (2.24), one finds 

.*P) 
- 1  (n +2)(n2+28n + 100) 

6(n + 8)’ 

(2.31) 

(2.32) 

(2.33) 

with 
(1 - p)f/(2A”v) p = (2.34) 

These equations together give a parametric representation of the susceptibility 

x = F1*( U/T/*) (2.35) 

with T and U playing the roles of non-linear scaling fields associated with the Gaussian 
k e d  point. (See, however, the discussion below.) We remark that this representation 
is ‘correct to 0 ( e 2 ) ’  in the sense that, when re-expanded in E, it is in accord with a direct 
perturbation expansion to this order. We also note that at O(E)  these results are in 
accord with the calculations of Nelson and Rudnick (1975). 

As anticipated,.* has a small-z power series ex ansion, which can be determined 

scaling function occurs at z =CO, and the behaviour of the susceptibility in this 
asymptotic (large-z) region may be obtained by solving (2.34) for 1 - p as a power series 
in Z2*Hv/f . Inspection of (2.33) shows that the divergence of the susceptibility is indeed 
governed by y (equation (2.25)), and that the next to leading terms are characterized, as 

crossover scaling function 

solving (2.33) for p as a power series in z = U T f ’  4 . The singularity in the crossover 
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anticipated, by the exponent 

(2.36) 

For the purposes of the calculation described in the following section, it is also useful 
to have a closed-form representation for the susceptibility with the correct analytic 
structure in this asymptotic regime. This may be obtained by rewriting (2.28) as 

u*p) (2.37) 
( n  +2)(n2+28n +loo) 

6( n + 8)2 
x-I= z(u)t'(pu*/u)"'-~)/'( 1 + 

and writing, as a solution for (2.29), 

p = (1 - t"[l -(u*/u)]{(u/u*)+ tw[l-(U/U*)]}[1-(28'f)l)-1. (2.38) 

While formally correct within an E expansion this equation has the correct analytic 
structure only for the asymptotic (Heisenberg) regime; for a solution that has the 
correct analytic structure in both Gaussian and Heisenberg regimes one must use the 
parametric form, equations (2.33) and (2.34). 

Two remarks are now in order. The reader may note that the renormalization group 
equation (2.3) is valid only for the leading singular terms in I'(N), and yet one extends the 
solution (2.13) of (2.3) into a region t ( ~ )  = e2', in which the non-leading terms in the RHS 
of (2.13) are as large as the leading terms we retain! However, this is not erroneous, 
because equation (2.3) applies formally to the leading singular terms in I'(N), regardless 
of whether the 'non-leading' singular terms are as large as the 'leading' singular terms. 
The only approximation lies in the assumption that the full critical vertex function 
r(2)(O; U, t, 1) ( t  << 1) can be approximated by its leading singular terms, neglecting the 
fast transients, which are softer by powers of t of order 1. (The dubious reader can 
circumvent this problem by using renormalized perturbation theory; an explicit check 
shows that, at O(e2),  and with the renormalization conditions of BrCzin et a1 (1976), the 
equations are exactly the same as those derived above with A replaced by the 
renormalization point p, and U and t replaced by renormalized quantities.) 

Lastly, we turn to consider the status of the 'non-linear scaling field' T introduced in 
(2.31). According to this equation, T i s  proportional to the (true) reduced temperature 
t = ( T -  T,(u))/T,(u). It is known, however, that the transition temperature, TJu) is a 
non-analytic function of the coupling constant U at fixed non-zero E (Symanzik 1973, 
Sugar and White 1974) even though it is an analytic function of E at fixed U (Balian 
1975). Specifically, T,(u) (and hence t itself) contains terms of the form U*/'. In 
consequence, T does not have the analytic properties required of a scaling field of the 
Gaussian fixed point, but should have the form (for small U) 

(2.39) 

where To is analytic in U. The susceptibility (2.23) is thus expressible as a function of 
u G C I 2 .  This function, however, will not have the anticipated analytic form for small 
20 UG''~, but will contain terms of the form z y ' .  This suggests, therefore, that the 
calculation leading to (2.32) may have failed to pick up some compensating non- 
analytic terms. It is not clear how serious this defect is; however, since these terms 
cannot make an appearance within the (strict) framework of an E expansion upon which 
this work is based, equation (2.33) is, at the very least, a consistent representation of the 
susceptibility to second order in E .  

T = ~ f J [ l - c ( u ~  4 2  ) 2/ '1 
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2.3. The effective susceptibility exponent 

In figure 1 we display our results for the effective exponent (Riedel and Wegner 1974) 

a In x 
Yefi  = -- aln 9 

(2.40) 

obtained from the parametric form (2.33) and (2.34) for the Ising model ( n  = 1) in three 
dimensions (E = 1). The curves are drawn with U set equal to unity and 9 normalized 
such that 9 ( z )  = 1 - z +O(z2) .  The exponents in (2.32) and (2.33) are chosen so that 
l / W  and y are correct to O(E’). (Thus (y - 1)/0 does contain some extraneous higher 
powers of E . )  

lg 7 

F i p e  1. The effective exponent ye* for the Gaussian-king crossover. The full curve is the 
result of the full O ( p 2 )  calculation. The broken curve represents the results obtained from 
the phenomenological equations (2.41) and (2.42). 

For comparison, we also show the result of a phenomenological calculation (along 
the lines suggested by Riedel and Wegner (1974)) based on the equations (cf (2.1 1) and 
(2.12)) 

dU(7) - U(?) + U%) 
d? 

(2.41) 

(2.42) 

where A is chosen to give the exponent y correct to second order in E ;  x is then 
identified with t(?) in the limit T + -W. There is a surprising difference from the exact 
0 ( e 2 )  results, principally because the correction to the scaling exponent 0 ,  which 
governs how rapidly yeff assumes its asymptotic value, is 0.5 in the phenomenological 
approach and closer to 0.3 in the full calculation. This difference may be detectable in 
the ( n  = 0) polymer problem-see Burch and Moore (1976). 

3. Crossover behaviour in the anisotropic Heisenberg system 

3.1. Preliminaries 

As indicated in the introduction, the solution of the Gaussian-Heisenberg crossover 
problem, described in the preceding section, may be exploited to yield, in conjunction 
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with the results obtained in I, a complete description of the susceptibility crossover in 
the anisotropic Heisenberg system. It is this calculation that we now describe, begin- 
ning with a summary of the results of I and the philosophy of the analysis described in 
the following subsection. 

Briefly (for full details the reader is referred to I) the 
n-component Heisenberg model (of the form (2.1)) with 
exchange term 

system we consider is an 
an additional anisotropic 

(3.1) 

where g is a measure of the anisotropy and is assumed small. The perturbation (3.1) 
results (for g > 0) in an asymptotic m-component critical behaviour, the crossover to 
this behaviour being described (in the case of the susceptibility) by the scaling form 
(Pfeuty et al 1974) 

where y(n) and y ( m )  are the n-component and m-component Heisenberg exponents 
(defined by (2.25)), t is the reduced temperature 

t T -  T,(g = 0) (3.3) 

and y is defined as f/i, with f cc g/ t* .  Here 4 is the appropriate crossover exponent 
(Wilson 1972) and x' locates the singularity of the crossover scaling function; its E 

expansion was obtained in I (equation (3.20)). The function P- ' (y )  is obtained (after 
some manipulation) from equation (3.19) of I in the form 

P-'(y)= 1+- 1 - y  { - 2(n+8) E [ (n-m+my)ln  ( I+- ny;) 

(n2+26n+84)  (n-m)  
- ny In (&)I (l + 2(n +SI2 ')+8(n +8)" 

x [ (n-2m) ( 1+- n::) ln2 (1 +%) 
n-m 

n(m + 2)(n - m )  
4(n + 8)2( m + 8) 

8(n + 8) n-m 

+ 
2 

- 2 E 2  l n z ( ' A ) }  +ln( l -  y )  [ 2( ( m  + 2)(m - n) 
n + 8)( m + 8) E 

(n +2)(n2+ 22n + 52) - (n - m)(n2+ 26n + 84) + E 4(n + 813 
( m  + 2)(m2 +22m + 52) 

4(m + 813 

m(m + 5)(n - m)  
2(n + 8)'(m + 8) 

E - 

+ 
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(2m2-mn+4m+4)  (m+2)2  (m+2)2 
8( m + 8)' E - 4( m + 8)( n + 8) 

E2 + 
8(n + 8)2 +ln2(1- y)  ( 

(3.4) 

where the function Il was defined in equation (3.7) of I. 
The appearance of the ln(1- y)  terms in (3.4) is a manifestation of the fact that (as 

discussed in I) the crossover scaling function ha5 built into it corrections to the 
asymptotic (m-component) scaling behaviour. This is true (in an experimental situa- 
tion) even if t and g are small enough that corrections to the primary scaling behaviour 
are vanishingly small, or (in the theoretical analogue) when these corrections are 
specifically eliminated by the choice of coupling constant in the perturbation expansion 
that leads to (3.4). Of the secondary correction to scaling terms, it is only those 'slow 
transients' characterized by exponents O(E) that lead to the truly divergent logarithms 
in (3.4). In certain crossover problems (the cubic-Heisenberg crossover, discussed by 
Aharony (1973), is one example) there may be more than one such transient. In this 
problem, however, it is clear from RG recursion-relation insights into the evolution of 
the perturbation causing the crossover, that there should be only the one-namely that 
associated with the leading correction to scaling behaviour for an isotropic m-  
component system. It is this observation that we exploit to determine the limiting 
behaviour of (3.4). S ecifically we shall make use of the fact that, in the y + 1 limit, the 
expression (1 - y)"'"!F1(y) (with the prefactor also €-expanded), must match on to a 
direct E expansion for the (inverse) susceptibility of an isotropic m-component 
system4.e.  (2.5),  but with n replaced by m, and U and t replaced by an effective 
coupling constant and an effective temperature variable 

(3.5a) 

(3.5b) 

(3 .5c )  

where we demand that u ( y )  andf(y) are analytic functions of y, with well defined limits 
as y + 1. An exponentiated form for P-'(y) may then be read off from (2.37) and (2.38) 
with the appropriate substitutions. 

It must be remarked that, were we to adhere strictly to the philosophy expounded 
above, we would demand only that this matching should be possible in the asymptotic 
y +. 1 limit, thence determining two constants u(1)  and f(1). The use of the effectively 
temperature-dependent quantities u(y )  and f(y), however, enables us to incorporate 
those terms in the function P-'(y) (equation (3.4)), which vanish as (1 - y)  ln(1- y). It 
is possible that such terms are manifestations of fast transients, and should, in fact, be 
exponentiated to give correction to scaling terms vanishing as (1 - y)'+O(').  The result 
we shall obtain should, however, offer a perfectly adequate representation of the 
susceptibility throughout the crossover regime, having the merits that ( a )  it will 
certainly give a rigorously correct account of the asymptotic behaviour (unlike the 
unexponentiated form (3.4)) and ( b )  it has an expansion in E that is correct to 0 ( e 2 ) .  

3.2. Calculations and results 

It is simply a matter of rather lengthy algebra to implement the matching procedure 
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outlined above. To O(E') we find that the effective coupling constant u(y) may be 
written as 

where u*(n) is the n-component fixed point value (2.16). The final term has its origins 
in the non-elementary integral Zl in equation (3.4), which may be written as 

with the non-analytic terms defined by 

4{1 +[my/(n - m)I) i l  ( 

The normalization of the temperature scale may be written conveniently as 

f(y) =J(y)[l +iu(y)(m +2) +$u2(y)(m + 2)(2m - 8 - 3 r 2 +  24A)I-l (3.9) 
where f(y)  is defined by 

n 
4(n+8)2 

+ E'(n2+ 24n +68 - mn -8m) In 

+ n2 € 2  In2 (A)] 
8(n+8)' n -m 

(n - m) 
2(n + 8) n - m  2(n + 8)' 

n2+24n +68- mn -8m 
+ - E  (I +%) In (I +*)( 1 + 

(3.10) 
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Then, using (3.6), (3.9) and (3.10) and making the substitutions ( 3 3 ,  one obtains from 
(2.37) the result 

where h(y) is defined by 

(m +2)e2 
4(n+8)(m+8)(1-y) 

(3.12) 

The variable Q(y) is defined by an equation analogous to (2.38), namely 

Equation (3.11), together with (3.6), (3.10), (3.12) and (3.13) definesourexponentiated 
representation of the function (3.4). It is a reassuring, though lengthy, task to check that 
the E expansion of (3.11) does indeed coincide with (3.4). One may also check that 
these results are in accord with the O(E) calculations of Nelson and Domany (1976) and 
Kosterlitz (1976). 

Finally, we note that the universal amplitude X defined by (Pfeuty et a1 1974) 

X = Iim ~ ( y )  (3.14) 
Y + l  

is given by (3.11) as 

= ( m  + 8)(m+2)'(m+8) 3(n - m)E n 
n + 8  [l -(n +8)(m +8) In 

2(m + 8)3 m + 8  2(n +8)2(m +8) 
(m +2)(n2-2n -20) 

E In (*) - 
- (m+2)(m2+22m +52) 

(m +2M30mn + 120n -m3-36m2-84m + 160) 

2(m +8)(n +8) €3 ' m2-2mn -4n-4m - (3.15) 

It may be remarked that this result is compatible with the spherical model (n, m +CO 

limit) result, which one may readily derive as 

(3.16) 

This differs from a result of Oppermann (1975); the discrepancy may be partially 
attributed to this author's use of a scalingvariable that is effectively y I/", rather than y. 
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3.3. Discussion 

The most sensitive test of the results presented in the preceding section is afforded by 
comparison of the representation (equations (3.1 1) onwards) for P(y) with the series 
expansion calculations of Pfeuty eta1 (1974) and Singh and Jasnow (1975a, b). Figure 2 
shows this function calculated for the case n = 2, m = 1 and compared with two of the 
series expansion approximants examined by Singh and Jasnow (1975a). Evidently 
there is good agreement between the E expansion result and the second of these 
approximants. This is in accord with the conclusions of I, where it was noted that the 
O(E’) values of the amplitude i are in most satisfactory agreement with those series 
results based upon a small argument expansion of the scaling function; indeed, these 
were the results that were used as a basis for the second series approximant (Singh and 
Jasnow 1975a). This trend is maintained in the values of the amplitude X; table 1 shows 
the values assigned to this amplitude on the basis of the series work compared with 
those obtained from the result (3.15) and those obtained by evaluating P(1) explicitly 
from (3.11). The latter (which are in significantly better agreement with the series 

Figore 2. The function P(y) for the n = 2 to m = 1 component crossover. The full curve is 
the result of the O(c2) expression derived here; the broken curves are the results of two of 
the approximants obtained in the series work of Singh and Jasnow (1975a). 

Table 1. Values of the universal amplitude X for n-component spin systems with dominant 
m-component anisotropy. The c-expansion results are obtained from the evaluation of 
P(1) using (3.11) and (in parentheses) from the strict O(E)  expression (3.15). The series 
results are obtained from the work of Pfeuty eral(l974) and Singh and Jasnow (1975a, b), 
using the values obtained from a small L expansion of the scaling function and (in 
parentheses) from an analysis at finite g, extrapolating to g = 0. 

n m N n ,  m )  

c expansion Series expansion 
~ 

2 1 1.029 (0.973) 1.030 (1.066) 
3 1 0.984 (0,919) 1.00 (1.09) 
3 2 1.100 (0.998) 1.075 (1.158) 
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results) differ from the former in that they contain terms of second (and higher) order in 
E which we cannot strictly retain in the formal expansion (3.15). 

From an experimental point of view, potentially the most physically interesting 
quantity yielded by our analysis is the effective critical exponent yen, defined by (2.40) 
with t - tc measuring the deviation from the true transition temperature. With the 
aid of (3.2) it is easy to show that one may write this effective exponent in the form 

(3.17) 

The resulting function yen (2, 1) (with P ( y )  given by (3.1 1)) is compared, in figure 3, with 
the series results of Singh and Jasnow (1975a). We have introduced a reduced 
temperature variable i, proportional to t - t,, and defined by 

(3.18) 

, 2 0 0  L 
-L -2 0 2 

lg i 

Flgme 3. The effective exponent yCR for the n = 2 to m = 1 component crossover. The full 
curve is the result of the O(e2) calculation; the broken curve is a result of the series work 
(Singh and Jasnow 1975a). Note that only the forms of these curves may be meaningfully 
compared; their relative positions on the logarithmic temperature scale are subject to 
uncertainties involving non-universal scale factors. 

The good agreement is to be expected in view of the close correspondence (figure 2) 
of our result for P ( y )  with the second series approximant, which was used to generate 
the series results shown in figure 3. 

It is to be remarked that, while the essential form of yeff(n, m) is determined by the 
first two terms in the parentheses in (3.17), the third term (evidently the hardest to 
calculate!) can contribute significant refinements. As a measure of its importance we 
show in figure 4 the results of two computations of yen (3,2), one ignoring, and the other 
including this term. Clearly the marked dip present in the former result (and present, to 
some extent, in the O(E)  calculations of Nelson and Domany (1975)) is suppressed in 
the correct O(e2) calculation, and the effective exponent evolves relatively smoothly 
between its two limits. This is also true of the Heisenberg-king crossover which we 
therefore do not show. 

Finally, we remark that while at present the experimental situation offers little with 
which to compare the results of our calculations, such a comparison may ultimately be 
afforded with further investigations of 'spin flop' systems (Rohrer 1975). These systems 
are describable (see Nelson et a1 1974, Kosterlitz et a1 1976) by the anisotropic spin 
Hamiltonian we have investigated, with the anisotropy parameter g tunable, through 
adjustment of an applied magnetic field. 
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Figure 4. The effective exponent -yeR for the n = 3 to m = 2 component crossover. The full 
curve is the result of the full O(E*) calculation; the broken curve is the result obtained when 
the third term in the parentheses in (3.17) is ignored. 

4. Concluding remarks 

In summary we have obtained a representation of the susceptibility crossover scaling 
function in anisotropic spin systems, to 0(e2) ,  using an approach which offers a useful 
and labour saving synthesis of renormalization group and Feynman graph methods. 

In principle it should, of course, be possible to obtain these results entirely within the 
framework of the RG, avoiding the matching to the FG expansion. However, of the pure 
RG methods used to obtain scalin functions to O(E) ,  only that of Horner (1976) would 
appear to be tractable in an O(E ) calculation. 

Our method is, of course, applicable to other thermodynamic functions, and to other 
crossover problems. We shall report elsewhere the results of analogous calculations for 
the Heisenberg-dipolar crossover, where O(E)  calculations (Bruce et al 1976) 
suggested the existence of an experimentally intriguing dip in the effective susceptibility 
exponent in the crossover regime. At O ( E )  this dip is much more pronounced than its 
anisotropic spin counterparts, mainly by virtue of the large asymptotic value of yeff, and 
of the crossover exponent appropriate for this problem. In view of the experimental 
situation (review by Bruce eta1 1976) it is of considerable interest to determine whether 
this effect is enhanced or diminished by the second-order calculations. 
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